

Physics Curriculum

Reading and Writing Standards

Marking Period	Reading Assessments	Writing Assessments
1	Analyze Particle motion diagrams and position vs time graphs	Lab report: how to find the average and instantaneous speed of a runner.
2	Relate, identify and solve problems using kinematic variables.	Draw free-body diagrams showing the magnitude and direction of all forces acting on an object.
3	Identify the relationships between energy, work and power. Students will solve problems involving these variables.	Scientific report on the mousetrap car detailing the simple machines kinematic variables
4	Measure potential energy in a spring and solve problems involving electric force	Design and create a rube goldberg machine

Scoring Rubric for Written Work

Physics Curriculum

Content Topics and Pacing

Торіс	Duration	Guiding Questions	Reading and Writing Assignments
Science Skills (Introduction to Physics)	13 days	How do we use the scientific process? How do we use math in science? How do we model scientific phenomena?	Converting measurements Creating a scientific model and answering a prompt using the CER writing method.
Motion in 1D: Representing Motion	~18 days	What is Physics? How do we describe motion of an object?	Reading a position vs time graph Creating a particle motion diagram
Motion in 1D: Measuring motion	~14 days	How can we use mathematical equations to determine the position, velocity or acceleration of an object?	Reading equations with variables used in physics Creating a velocity vs time graph for a moving object
Free Fall	~14 days	Can you find the height that an object falls from? Can you find the height a homemade rocket travels to?	Motion diagram with kinematic variables Finding the height that you can throw a baseball
Forces in 1D	~15 days	How can we find the normal force applied to an object using Newton's second law?	Analyze diagram and graphs and solve for the force applied to an object Draw free-body diagrams showing the magnitude and direction of all forces acting on an object
Forces in 2D: Vectors *	~12 Days	How can we map the motion of a homemade rocket launched at a 45 degree angle?	Solve for the vertical and horizontal motion of an object Graphing the motion of a rocket in the x and y direction

Physics Curriculum

Momentum and its Conservation	~13 Days	How can we measure the momentum of a moving object?	Finding the displacement object move after collision Collecting and analyzing data from a cart colliding with a brick	
Energy, work and simple machines	~26 days	How is mechanical advantage used to make efficient cars?	Solving problems for energy and work Collecting and analyzing data from a balloon car	
Energy and its Conservation	~18 days	How high will a bouncy ball bounce if dropped from a height of 20 meters? 1000 meters?	Measure the elastic potential energy generated from a mousetrap Mousetrap car project	
Electricity	~14 days	How are charges distributed on different types of materials?	Solve for electric force using coulomb's law Diagram electric field lines	
EOY Project	~10 days	How can we use projects throughout the year along with other apparatuses to create a rube goldberg machine?	Teamwork in Engineering Design and creating a rube goldberg machine	
Astronomy and Kepler's Laws *	~10 days	How are Kepler's laws related to universal gravity? How can we calculate the rotational velocity of the Earth?	Finding the orbital velocity and period of a planet Map a solar system given a	
Modern Physics and Technology *	~10 days	What does a theoretical physicist analyze? What does an experimental physicist analyze?	Theoretical vs Experimental Physicist Reflection of Interstellar: Theoretical vs Experimental physics	
*These topics can be skipped or adjusted if time does not allow for them				